
AIM
To learn new technology, the most efficient way is to practise it. The aim of this
practical exploration is to publish a sample .net web application to Cloud Foundry
via Concourse, which is also a Pivotal product.

CREATE A SAMPLE .NET WEB PROJECT
To start the exploration, we need a .net web project with some unit tests. I
created two projects, one called Concourse Api which uses the default web
project template. The other was called Concourse.Test using the unit test
template.

CONCOURSE CI
Concourse CI is a CI/CD solution built by Pivotal. It integrates well with other
Pivotal products. However, Concourse is also a stand-alone product which
means you can also use it on other platforms. You can think of Concourse as a
Jenkins alternative or competitor.

INSTALL CONCOURSE
Before installing Concourse, please make sure your machine/environment has
the following tools installed:
1. Docker
2. Docker Compose

Download the docker compose file and navigate to the file location and run the
following command:

Spin up a container
docker-compose up -d

Using this command, the Docker-Compose file should be called “docker-
compose.yml”, which is the default file name of the docker-compose command
configuration file. Otherwise, you should use the following command to notify the
tool where the configuration file is located:

Spin up a container with specific configuration file
docker-compose -f docker-compose-quickstart.yml up -d

After applying the command, you can navigate to http://localhost:8080 to check
your installation.

A PRACTICAL EXPLORATION OF CLOUD
FOUNDRY AND CONCOURSE

assurity.nz

https://www.docker.com/products/container-runtime
https://docs.docker.com/compose/install/#install-compose
https://github.com/concourse/concourse-docker/blob/master/docker-compose.yml
http://localhost:8080/teams/main/pipelines/test-pipeline
http://localhost:8080/teams/main/pipelines/test-pipeline

Note
In this step, we only need to ensure the Concourse is successfully installed. You
don’t need to log in into the server at this stage.

Besides installing the Concourse server on your machine, you also need to install
two CLI tools, fly and concourse. You can download these tools here.

BASIC CONCOURSE COMMANDS
To start with learning Concourse, I recommend you read this tutorial which
comes highly recommended by Concourse. Here, I only list some common
usages. Fly CLI will be used to manipulate the Concourse server.

Login to the Concourse server with fly CLI
fly -t poc login -c http://localhost:8080

poc is a target variable which the user can define, thus you can assign any value
which fit into your scenario.

The first time you execute this command you also need to ensure the fly CLI tool
has the same version as Concourse. The following command also needs to be
applied if it is your first time logging in:

Ensure fly CLI have the same version as Concourse
fly -t poc sync

Run a task on Concourse with fly CLI
For a CI/CD server, to run a task is a basic operation. Running a task on
Concourse, a docker container will be created to execute the command. This
architecture gives developers peace of mind on the task execution environment.
There is low overhead cost and good performance when spinning up a virtual

environment in docker, which also means the concourse server doesn’t need to
utilise too many resources.

hello_world.yml
platform: linux

image_resource:
 type: docker-image
 source: {repository: busybox}

run:
 path: echo
 args: [hello world]

As this is a YAML file, we can see a Linux container will be created and we will
execute a simple command: echo hello world.

To run this simple task on Concourse, we can use the following command
with fly:

Run a simple task on Concourse with fly
fly -t poc e -c task_hello_world.yml

Set up a pipeline on Concourse with fly
The pipeline is also described by a YAML file. A simple CI/CD pipeline normally
will have two resources. One is your code repository and the other is the delivery
destination. In this example, the code repository is a GIT repository and the
delivery destination is Pivotal Cloud Foundry. Multiple tasks will be executed
when the pipeline is trigged. These operations include Build, Test, Release.
To use this pipeline configuration, you need to have a Pivotal Cloud Foundry
account and put your username and password in the configuration.

assurity.nz

https://concourse-ci.org
https://concoursetutorial.com

pipeline.yml
resources:
- name: code-source
 type: git
 source:
 uri: https://github.com/skyline9002/PivotalPoc
 branch: master
- name: pcf
 type: cf
 source:
 api: https://api.run.pivotal.io
 skip_cert_check: false
 username: xxxxxxx
 password: xxxxxxx
 organization: pivotal-simon-huang
 space: development

jobs:
- name: aspnetcore-unit-tests
 plan:
 - get: code-source
 trigger: true
 - task: run-tests
 privileged: true
 config:
 platform: linux
 inputs:
 - name: code-source
 image_resource:
 type: docker-image

 source:
 repository: microsoft/aspnetcore-build
 run:
 path: sh
 args:
 - -exc
 - |
 cd ./code-source/Concourse.Test
 dotnet restore
 dotnet test

- name: deploy-to-prod
 plan:
 - get: code-source
 trigger: true
 passed: [aspnetcore-unit-tests]
 - put: pcf
 params:
 manifest: code-source/manifest.yml

In the deploy-to-prod task, we can see the pipeline notify Pivotal Cloud Foundry
to provision resources and deploy the application. The manifest.yml is shown as
follows:

manifest.yml
applications:
- name: dotnet-poc-simonhuang
 memory: 256M
 instances: 1
 buildpack: dotnet_core_buildpack
 path: /tmp/build/put/code-source/Concourse.Api

assurity.nz

Note
Please note your manifest.yml should be in the root directory of your code
repository. Otherwise, please modify to the correct path in your manifest.yml
To set up this pipeline in your Concourse server, namely your local machine in
this example, use the following command.

Setup a pipeline on Concourse via fly
fly -t poc set-pipeline -c pipeline.yml -p test-pipeline

Then you can check your pipeline from: http://localhost:8080/teams/main/
pipelines/test-pipeline

You can see the overall pipeline status from each step. A green colour means
the step ran successfully, yellow highlighted means the step is running and red
means there have been some blockers in the step. Also, for further details of the
task running, you can click on the step status to check the log.

FINAL STEPS
As a final step of the exercise, you should see your pipeline tasks running with
a cheerful green colour. Up to this point, you have successfully deployed a .net
application to Cloud Foundry with Concourse. Furthermore, you can log in to
your Pivotal account to check your running instance. The Pivotal platform will
assign a random public URL to your running instance which is the entry to your
web application. Also, when you try to push some modified code into the master
branch, you will see the pipeline triggered again. Woo hoo!

assurity.nz

This screenshot shows the pipeline established successfully and running

This screenshot showed the log of details execution. We can see unit tests
executed in the pipeline and passing.

http://localhost:8080/teams/main/pipelines/test-pipeline
http://localhost:8080/teams/main/pipelines/test-pipeline

AUCKLAND

Level 6
22 Fanshawe Street
PO Box 106 949
Auckland 1143

t. (64) 9 354 4901

WELLINGTON

Level 6, Harbour Tower
2 Hunter Street
PO Box 25 440
Wellington 6140

t. (64) 4 473 0901

CHRISTCHURCH

Level 2
53 Victoria Street
PO Box 25 443
Christchurch 8144

t. (64) 3 379 9146

@AssurityConsulting

@AssurityNZ

Assurity Consulting Ltd

assurity.nz

http://assurity.co.nz
https://www.facebook.com/AssurityConsulting
https://twitter.com/assuritynz
https://nz.linkedin.com/company/assuritynz
http://assurity.nz

